Муниципальное бюджетное общеобразовательное учреждение "Острожская средняя общеобразовательная школа" МБОУ "Острожская СОШ"

PACCMOTPEHA

на педагогическом совете

Протокол № 1 от «28» августа 2025 г. **УТВЕРЖДЕНА**

Директор

Приказ № 148 от «29» августа

h::5

РАБОЧАЯ ПРОГРАММА ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ

естественно-научной направленности **«Решение физических задач»**

11 классы

Пояснительная записка

Программный материал рассчитан для учащихся 11 классов на 1 учебный час в неделю, всего 32 часа. Настоящая программа позволяет более глубоко и осмысленно изучать практические и теоретические вопросы физики.

Цель этого элективного курса — развить у учащихся следующие умения: решать предметно-типовые, графические и качественные задачи по дисциплине; осуществлять логические приемы на материале заданий по предмету; решать нестандартные задачи, а также для подготовки учащихся к успешной сдаче ЕГЭ.

Программа посвящена рассмотрению отдельных тем, важных для освоения методов решения задач повышенной сложности. В программе рассматриваются теоретические вопросы, в том числе понятия, схемы и графики, которые часто встречаются в формулировках контрольно- измерительных материалов по ЕГЭ, а также практическая часть. В практической части рассматриваются вопросы по решению экспериментальных применять которые позволяют математические знания навыки, способствующие творческому и осмысленному восприятию материала.

В результате реализации данной программы у учащихся формируются следующие учебные компетенции: систематизация, закрепление и углубление знаний фундаментальных законов физики; умение самостоятельно работать со справочной и учебной литературой различных источников информации; развитие творческих способностей учащихся.

Цель: Подготовка учащихся к успешному усвоению знаний.

Задачи:

- 1. Научить учащихся самостоятельно анализировать конкретную проблемную задачу и находить наилучший способ её решения.
- 2. Развитие физического и логического мышления школьников.
- 3. Развитие творческих способностей учащихся и привитие практических умений.

В результате прохождения программы учащиеся должны знать:

- основные понятия физики;
- основные законы физики;
- вывод основных законов;
- понятие инерции, закона инерции;
- виды энергии;
- разновидность протекания тока в различных средах;
- состав атома;
- закономерности, происходящие в газах, твердых, жидких телах.

В результате прохождения программы учащиеся должны уметь:

- производить расчеты по физическим формулам;
- производить расчеты по определению координат тел для любого вида движения;
- производить расчеты по определению теплового баланса тел;
- решать качественные задачи;
- решать графические задачи;
- решать задачи на соответствие;
- снимать все необходимые данные с графиков и производить необходимые расчеты;
- писать ядерные реакции, рассчитывать период полураспада, энергию связи, энергетический выход ядерных реакций;
- составлять уравнения движения;
- по уравнению движения, при помощи производной, находить ускорение, скорость;
- давать характеристики процессам происходящие в газах;
- строить и объяснять графики изопроцессов;
- описывать процессы при помощи уравнения теплового баланса;
- применять закон сохранения механической энергии;
- применять закон сохранения импульса;
- делать выводы.

Содержание курса

Механика (7 ч)

<u>Кинематика</u> поступательного и вращательного движения. Уравнения движения. Графики основных кинематических параметров.

<u>Динамика</u>. Законы Ньютона. Силы в механике: силы тяжести, упругости, трения, гравитационного притяжения.

Статика. Момент силы. Условия равновесия тел. Гидростатика.

Движение тел со связями – приложение законов Ньютона.

Законы сохранения импульса и энергии.

Молекулярная физика и термодинамика (6 ч)

Основное уравнение МКТ газов.

<u>Уравнение состояния идеального газа</u> – следствие из основного уравнения МКТ. Изопроцессы.

<u>Первый закон термодинамики</u> и его применение для различных процессов изменения состояния системы. Термодинамика изменения агрегатных состояний веществ. Насыщенный пар.

Второй закон термодинамики, расчет КПД тепловых двигателей.

Электродинамика (7 ч)

<u>Электростатика.</u> Напряженность и потенциал электростатического поля точечного заряда. Графики напряженности и потенциала. Принцип суперпозиции электрических полей. Энергия взаимодействия зарядов.

Конденсаторы. Энергия электрического поля

<u>Постоянный ток.</u> Закон Ома для однородного участка и полной цепи. Расчет разветвленных электрических цепей.

<u>Магнитное поле.</u> Принцип суперпозиции магнитных полей. Силы Ампера и Лоренца. <u>Электромагнитная индукция</u>

Колебания и волны. (5 ч)

<u>Механические гармонические колебания.</u> Простейшие колебательные системы. Кинематика и динамика механических колебаний, превращения энергии. Резонанс.

<u>Электромагнитные гармонические колебания.</u> Колебательный контур, превращения энергии в колебательном контуре. Аналогия электромагнитных и механических колебаний.

Переменный ток.

Механические и электромагнитные волны.

Оптика (4ч)

<u>Геометрическая оптика.</u> Закон отражения и преломления света. Построение изображений неподвижных предметов в тонких линзах, плоских зеркалах.

<u>Волновая оптика.</u> Интерференция света, условия интерференционного максимума и минимума. Дифракция света. Дифракционная решетка. Дисперсия света.

Квантовая физика (3 ч)

Фотон. Давление света. Уравнение Эйнштейна для фотоэффекта.

<u>Применение постулатов Бора</u> для расчета линейчатых спектров излучения и поглощения энергии водородоподобными атомами

<u>Атомное ядро.</u> Закон радиоактивного распада. Применение законов сохранения заряда, массового числа в задачах о ядерных превращениях.

КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

№	Тема	Дата
-,-	Механика	<u> </u>
	Кинематика поступательного и вращательного движения.	
1.	Уравнения движения. Графики основных кинематических	
	параметров	
2.	Решение задач по теме «Законы Ньютона»	
3.	Решение задач по теме «Силы в механике»	
4.	Решение задач по теме «Статика»	
5.	Решение задач по теме «Гидростатика»	
6.	Решение задач по теме «Законы сохранения»	
7.	Решение тестовых заданий	
	Молекулярная физика и термодинамика	
8.	Решение задач по теме «Основное уравнение МКТ, Уравнение	
	состояния идеального газа»	
9.	Решение задач по теме «Изопроцессы»	
10.	Решение задач по теме «Первый и второй законы термодинамики»	
11.	Решение задач на уравнение теплового баланса	
12.	Решение задач на соответствие	
13.	Решение тестовых задач	
	Электродинамика	
14.	Решение задач по электростатике.	
15.	Решение задач по электростатике.	
16.	Решение задач на законы постоянного тока	
17.	Решение задач на описание магнитного поля.	
18.	Решение задач на закон электромагнитной индукции.	
19.	Решение задач на расчет индуктивности и энергии магнитного	
	поля. Явление самоиндукции.	
20.	Решение тестовых задач	
	Колебания и волны	
21.	Решение задач на описание механических и электромагнитных	
	колебаний.	
22.	Решение задач на различные типы соединений в цепи переменного	
	Тока.	
23.	Решение задач на описание механических и электромагнитных	
24.	волн. Решение задач на соответствие	
25.	Работа с тестами по колебаниям и волнам.	
20.	Оптика	
26.	Решение задач по геометрической оптике.	
	Решение задач на волновые свойства света. Шкала	
27.	электромагнитных излучений.	
28.	Решение задач на соответствие	
29.	Работа с тестами по оптике.	
	Квантовая физика	
30.	Решение задач на законы фотоэффекта, на расчет характеристик	
	фотона. Гипотеза де Бройля.	
31.	Решение задач на описание ядерных реакций, расчет энергии связи	
31.	атомного ядра, энергетического выхода.	
32.	Решение тестовых заданий.	

Литература, используемая учащимися:

- 1. Γ .Я. Мякишев ., Б.Б. Буховцев., В.М. Чаругин. Физика. Учебник для 11 класса общеобразовательных. учреждений. Базовый и профильный уровень. М., «Просвещение», 2009 г.
- 2. А.П.Рымкевич. Физика. Задачник. 10 11 классы. М., «Дрофа», 2005 г
- 3. Г.Н.Степанова. Сборник задач по физике. 10 11 классы. М., «Просвещение», 2005 г

Литература, используемая учителем:

- 1. А.П.Рымкевич. Физика. Задачник. 10 11 классы. М., «Дрофа», 2005 г
- 2. Г.Н.Степанова. Сборник задач по физике. 10 11 классы. М., «Просвещение», 2005 г
- 3. А.Е.Марон, Е.А.Марон. Физика 11 класс. Дидактические материалы.- М., «Дрофа» 2007 г.
- 4. И.М. Гельфгат, Л.Э. Генденштейн, Л.А. Кирик. 1001 задача по физике. М., «Илекса», 1997 г.
- 5. Контрольно-измерительные материалы. ЕГЭ 2004 2010 г.г.